LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of protein conformational diversity on AlphaFold predictions

Photo from wikipedia

MOTIVATION After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods… Click to show full abstract

MOTIVATION After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION Supplementary data is available at the journal's web site.

Keywords: conformational diversity; impact protein; diversity; alphafold predictions; protein conformational; diversity alphafold

Journal Title: Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.