LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep learning identifies and quantifies recombination hotspot determinants

Photo from wikipedia

MOTIVATION Recombination is one of the essential genetic processes for sexually reproducing organisms, which can happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9… Click to show full abstract

MOTIVATION Recombination is one of the essential genetic processes for sexually reproducing organisms, which can happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9 binding motifs, are known to be related to the hotspots, their contributions to the recombination hotspots have not been quantified, and other determinants are yet to be elucidated. Here, we propose a computational method, RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot determinants in a purely data-driven manner, utilizing datasets from various studies, populations, sexes, and species. RESULTS RHSNet can significantly outperforms other sequence-based methods on multiple datasets across different species, sexes, and studies. In addition to being able to identify hotspot regions and the well-known determinants accurately, more importantly, RHSNet can quantify the determinants that contribute significantly to the recombination hotspot formation in the relation between PRDM9 binding motif, histone modification, and GC content. Further cross-sex, cross-population, and cross-species studies suggest that the proposed method has the generalization power and potential to identify and quantify the evolutionary determinant motifs. AVAILABILITY https://github.com/frankchen121212/RHSNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Keywords: identifies quantifies; recombination hotspot; hotspot; learning identifies; hotspot determinants; deep learning

Journal Title: Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.