LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

bmVAE: a variational autoencoder method for clustering single-cell mutation data

Photo by campaign_creators from unsplash

Abstract Motivation Genetic intra-tumor heterogeneity (ITH) characterizes the differences in genomic variations between tumor clones, and accurately unmasking ITH is important for personalized cancer therapy. Single-cell DNA sequencing now emerges… Click to show full abstract

Abstract Motivation Genetic intra-tumor heterogeneity (ITH) characterizes the differences in genomic variations between tumor clones, and accurately unmasking ITH is important for personalized cancer therapy. Single-cell DNA sequencing now emerges as a powerful means for deciphering underlying ITH based on point mutations of single cells. However, detecting tumor clones from single-cell mutation data remains challenging due to the error-prone and discrete nature of the data. Results We introduce bmVAE, a bioinformatics tool for learning low-dimensional latent representation of single cell based on a variational autoencoder and then clustering cells into subpopulations in the latent space. bmVAE takes single-cell binary mutation data as inputs, and outputs inferred cell subpopulations as well as their genotypes. To achieve this, the bmVAE framework is designed to consist of three modules including dimensionality reduction, cell clustering and genotype estimation. We assess the method on various synthetic datasets where different factors including false negative rate, data size and data heterogeneity are considered in simulation, and further demonstrate its effectiveness on two real datasets. The results suggest bmVAE is highly effective in reasoning ITH, and performs competitive to existing methods. Availability and implementation bmVAE is freely available at https://github.com/zhyu-lab/bmvae. Supplementary information Supplementary data are available at Bioinformatics online.

Keywords: cell; mutation data; single cell; variational autoencoder; cell mutation

Journal Title: Bioinformatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.