LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides

Photo from wikipedia

Abstract Motivation Plant Small Secreted Peptides (SSPs) play an important role in plant growth, development, and plant–microbe interactions. Therefore, the identification of SSPs is essential for revealing the functional mechanisms.… Click to show full abstract

Abstract Motivation Plant Small Secreted Peptides (SSPs) play an important role in plant growth, development, and plant–microbe interactions. Therefore, the identification of SSPs is essential for revealing the functional mechanisms. Over the last few decades, machine learning-based methods have been developed, accelerating the discovery of SSPs to some extent. However, existing methods highly depend on handcrafted feature engineering, which easily ignores the latent feature representations and impacts the predictive performance. Results Here, we propose ExamPle, a novel deep learning model using Siamese network and multi-view representation for the explainable prediction of the plant SSPs. Benchmarking comparison results show that our ExamPle performs significantly better than existing methods in the prediction of plant SSPs. Also, our model shows excellent feature extraction ability. Importantly, by utilizing in silicomutagenesis experiment, ExamPle can discover sequential characteristics and identify the contribution of each amino acid for the predictions. The key novel principle learned by our model is that the head region of the peptide and some specific sequential patterns are strongly associated with the SSPs’ functions. Thus, ExamPle is expected to be a useful tool for predicting plant SSPs and designing effective plant SSPs. Availability and implementation Our codes and datasets are available at https://github.com/Johnsunnn/ExamPle.

Keywords: prediction plant; plant small; ssps; plant; example

Journal Title: Bioinformatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.