LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths

Photo from wikipedia

Abstract Summary Heterogeneous knowledge graphs (KGs) have enabled the modeling of complex systems, from genetic interaction graphs and protein-protein interaction networks to networks representing drugs, diseases, proteins, and side effects.… Click to show full abstract

Abstract Summary Heterogeneous knowledge graphs (KGs) have enabled the modeling of complex systems, from genetic interaction graphs and protein-protein interaction networks to networks representing drugs, diseases, proteins, and side effects. Analytical methods for KGs rely on quantifying similarities between entities, such as nodes, in the graph. However, such methods must consider the diversity of node and edge types contained within the KG via, for example, defined sequences of entity types known as meta-paths. We present metapaths, the first R software package to implement meta-paths and perform meta-path-based similarity search in heterogeneous KGs. The metapaths package offers various built-in similarity metrics for node pair comparison by querying KGs represented as either edge or adjacency lists, as well as auxiliary aggregation methods to measure set-level relationships. Indeed, evaluation of these methods on an open-source biomedical KG recovered meaningful drug and disease-associated relationships, including those in Alzheimer’s disease. The metapaths framework facilitates the scalable and flexible modeling of network similarities in KGs with applications across KG learning. Availability and implementation The metapaths R package is available via GitHub at https://github.com/ayushnoori/metapaths and is released under MPL 2.0 (Zenodo DOI: 10.5281/zenodo.7047209). Package documentation and usage examples are available at https://www.ayushnoori.com/metapaths.

Keywords: meta paths; similarity search; heterogeneous knowledge; knowledge graphs; graphs

Journal Title: Bioinformatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.