LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beyond similarity assessment: selecting the optimal model for sequence alignment via the Factorized Asymptotic Bayesian algorithm

Photo from wikipedia

Abstract Motivation Pair Hidden Markov Models (PHMMs) are probabilistic models used for pairwise sequence alignment, a quintessential problem in bioinformatics. PHMMs include three types of hidden states: match, insertion and… Click to show full abstract

Abstract Motivation Pair Hidden Markov Models (PHMMs) are probabilistic models used for pairwise sequence alignment, a quintessential problem in bioinformatics. PHMMs include three types of hidden states: match, insertion and deletion. Most previous studies have used one or two hidden states for each PHMM state type. However, few studies have examined the number of states suitable for representing sequence data or improving alignment accuracy. Results We developed a novel method to select superior models (including the number of hidden states) for PHMM. Our method selects models with the highest posterior probability using Factorized Information Criterion, which is widely utilized in model selection for probabilistic models with hidden variables. Our simulations indicated that this method has excellent model selection capabilities with slightly improved alignment accuracy. We applied our method to DNA datasets from 5 and 28 species, ultimately selecting more complex models than those used in previous studies. Availability and implementation The software is available at https://github.com/bigsea-t/fab-phmm. Supplementary information Supplementary data are available at Bioinformatics online.

Keywords: hidden states; beyond similarity; similarity assessment; sequence alignment; model; sequence

Journal Title: Bioinformatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.