LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LigVoxel: inpainting binding pockets using 3D‐convolutional neural networks

Photo by bermixstudio from unsplash

Motivation: Structure‐based drug discovery methods exploit protein structural information to design small molecules binding to given protein pockets. This work proposes a purely data driven, structure‐based approach for imaging ligands… Click to show full abstract

Motivation: Structure‐based drug discovery methods exploit protein structural information to design small molecules binding to given protein pockets. This work proposes a purely data driven, structure‐based approach for imaging ligands as spatial fields in target protein pockets. We use an end‐to‐end deep learning framework trained on experimental protein‐ligand complexes with the intention of mimicking a chemist's intuition at manually placing atoms when designing a new compound. We show that these models can generate spatial images of ligand chemical properties like occupancy, aromaticity and donor‐acceptor matching the protein pocket. Results: The predicted fields considerably overlap with those of unseen ligands bound to the target pocket. Maximization of the overlap between the predicted fields and a given ligand on the Astex diverse set recovers the original ligand crystal poses in 70 out of 85 cases within a threshold of 2 Å RMSD. We expect that these models can be used for guiding structure‐based drug discovery approaches. Availability and implementation: LigVoxel is available as part of the PlayMolecule.org molecular web application suite. Supplementary information: Supplementary data are available at Bioinformatics online.

Keywords: using convolutional; binding pockets; inpainting binding; structure based; pockets using; ligvoxel inpainting

Journal Title: Bioinformatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.