LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-complexity regions in mammalian genomes are enriched for developmental genes

Photo by martindorsch from unsplash

Abstract Motivation Unique sequence regions are associated with genetic function in vertebrate genomes. However, measuring uniqueness, or absence of long repeats, along a genome is conceptually and computationally difficult. Here… Click to show full abstract

Abstract Motivation Unique sequence regions are associated with genetic function in vertebrate genomes. However, measuring uniqueness, or absence of long repeats, along a genome is conceptually and computationally difficult. Here we use a variant of the Lempel-Ziv complexity, the match complexity, Cm, and augment it by deriving its null distribution for random sequences. We then apply Cm to the human and mouse genomes to investigate the relationship between sequence complexity and function. Results We implemented Cm in the program macle and show through simulation that the newly derived null distribution of Cm is accurate. This allows us to delineate high-complexity regions in the human and mouse genomes. Using our program macle2go, we find that these regions are twofold enriched for genes. Moreover, the genes contained in these regions are more than 10-fold enriched for developmental functions. Availability and implementation Source code for macle and macle2go is available from www.github.com/evolbioinf/macle and www.github.com/evolbioinf/macle2go, respectively; Cm browser tracks from guanine.evolbio.mgp.de/complexity. Supplementary information Supplementary data are available at Bioinformatics online.

Keywords: mammalian genomes; high complexity; complexity; complexity regions; regions mammalian; enriched developmental

Journal Title: Bioinformatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.