LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities

Photo by hajjidirir from unsplash

Abstract Motivation Deep learning architectures have recently demonstrated their power in predicting DNA- and RNA-binding specificity. Existing methods fall into three classes: Some are based on convolutional neural networks (CNNs),… Click to show full abstract

Abstract Motivation Deep learning architectures have recently demonstrated their power in predicting DNA- and RNA-binding specificity. Existing methods fall into three classes: Some are based on convolutional neural networks (CNNs), others use recurrent neural networks (RNNs) and others rely on hybrid architectures combining CNNs and RNNs. However, based on existing studies the relative merit of the various architectures remains unclear. Results In this study we present a systematic exploration of deep learning architectures for predicting DNA- and RNA-binding specificity. For this purpose, we present deepRAM, an end-to-end deep learning tool that provides an implementation of a wide selection of architectures; its fully automatic model selection procedure allows us to perform a fair and unbiased comparison of deep learning architectures. We find that deeper more complex architectures provide a clear advantage with sufficient training data, and that hybrid CNN/RNN architectures outperform other methods in terms of accuracy. Our work provides guidelines that can assist the practitioner in choosing an appropriate network architecture, and provides insight on the difference between the models learned by convolutional and recurrent networks. In particular, we find that although recurrent networks improve model accuracy, this comes at the expense of a loss in the interpretability of the features learned by the model. Availability and implementation The source code for deepRAM is available at https://github.com/MedChaabane/deepRAM. Supplementary information Supplementary data are available at Bioinformatics online.

Keywords: learning architectures; dna rna; deep learning; comprehensive evaluation

Journal Title: Bioinformatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.