Sialic acid occupies terminal positions on O-glycans of cervical mucins, where they contribute to the increased viscosity of mucin thereby regulating sperm transport. This study characterised the sialylated cervical mucins… Click to show full abstract
Sialic acid occupies terminal positions on O-glycans of cervical mucins, where they contribute to the increased viscosity of mucin thereby regulating sperm transport. This study characterised the sialylated cervical mucins from follicular phase mucus of six European ewe breeds with known differences in pregnancy rates following cervical artificial insemination using frozen-thawed semen at both synchronised and natural oestrus cycles. These were Suffolk (low fertility) and Belclare (medium fertility) in Ireland, Ile de France and Romanov (both with medium fertility) in France and Norwegian White Sheep (NWS) and Fur (both with high fertility) in Norway. Expression of mucin and sialic acid related genes was quantified using RNA-sequencing in cervical tissue from Suffolk, Belclare, Fur and NWS only. Cervical tissue was also assessed for the percentage of cervical epithelial populated by mucin secreting goblet cells in the same four ewe breeds. Biochemical analysis showed that there was an effect of ewe breed on sialic acid species, which was represented by Suffolk having higher levels of Neu5,9Ac2 compared to NWS (P < 0.05). Suffolk ewes had a lower percentage of goblet cells than Fur and NWS (P < 0.05). Gene expression analysis identified higher expression of MUC5AC, MUC5B, ST6GAL1, ST6GAL2 and lower expression of ST3GAL3, ST3GAL4 and SIGLEC10 in Suffolk compared to high fertility ewe breeds (P < 0.05). Our results indicate that specific alterations in sialylated mucin composition may be related to impaired cervical sperm transport.
               
Click one of the above tabs to view related content.