LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistical inference of genetic pathway analysis in high dimensions.

Photo by dawson2406 from unsplash

Genetic pathway analysis has become an important tool for investigating the association between a group of genetic variants and traits. With dense genotyping and extensive imputation, the number of genetic… Click to show full abstract

Genetic pathway analysis has become an important tool for investigating the association between a group of genetic variants and traits. With dense genotyping and extensive imputation, the number of genetic variants in biological pathways has increased considerably and sometimes exceeds the sample size [Formula: see text]. Conducting genetic pathway analysis and statistical inference in such settings is challenging. We introduce an approach that can handle pathways whose dimension [Formula: see text] could be greater than [Formula: see text]. Our method can be used to detect pathways that have nonsparse weak signals, as well as pathways that have sparse but stronger signals. We establish the asymptotic distribution for the proposed statistic and conduct theoretical analysis on its power. Simulation studies show that our test has correct Type I error control and is more powerful than existing approaches. An application to a genome-wide association study of high-density lipoproteins demonstrates the proposed approach.

Keywords: statistical inference; pathway analysis; genetic pathway; analysis

Journal Title: Biometrika
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.