A popular modeling approach for competing risks analysis in longitudinal studies is the proportional subdistribution hazards model by Fine and Gray (1999. A proportional hazards model for the subdistribution of… Click to show full abstract
A popular modeling approach for competing risks analysis in longitudinal studies is the proportional subdistribution hazards model by Fine and Gray (1999. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association94, 496-509). This model is widely used for the analysis of continuous event times in clinical and epidemiological studies. However, it does not apply when event times are measured on a discrete time scale, which is a likely scenario when events occur between pairs of consecutive points in time (e.g., between two follow-up visits of an epidemiological study) and when the exact lengths of the continuous time spans are not known. To adapt the Fine and Gray approach to this situation, we propose a technique for modeling subdistribution hazards in discrete time. Our method, which results in consistent and asymptotically normal estimators of the model parameters, is based on a weighted ML estimation scheme for binary regression. We illustrate the modeling approach by an analysis of nosocomial pneumonia in patients treated in hospitals.
               
Click one of the above tabs to view related content.