LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AKT/GSK-3beta/VEGF signaling is involved in P2RY2 activation-induced the proliferation and metastasis of gastric cancer.

Studies have revealed the contribution of ATP-G protein-coupled P2Y2 receptor (P2RY2) in tumor progression, but the role of P2RY2 in regulating the progression of gastric cancer (GC) and related molecular… Click to show full abstract

Studies have revealed the contribution of ATP-G protein-coupled P2Y2 receptor (P2RY2) in tumor progression, but the role of P2RY2 in regulating the progression of gastric cancer (GC) and related molecular mechanisms are relatively lacking. Therefore, this study investigates the effects of P2RY2 on the proliferation and migration of GC through in vivo and in vitro experiments. The results showed that P2RY2 was expressed in GC tissues and GC cell lines. ATP increased the calcium influx in AGS and HGC-27 cells, and was dose-dependent with ATP concentration. ATP and UTP increased the intracellular glycogen content, enhanced the actin fiber stress response, and promoted the proliferation and migration of GC cells, while P2RY2 competitive antagonist AR-C118925XX reversed the changes induced by ATP. Knockdown of P2RY2 expression by shRNA inhibited the proliferation of GC cells. Activation of P2RY2 increased the expression of Snail, Vimentin and β-catenin in GC cells, and down-regulated the expression of E-cadherin, while AR-C118925XX decreased the expression of these genes induced by ATP. Activation of P2RY2 activated AKT/GSK-3beta/VEGF signal to promote the proliferation of GC cells, and the P13/AKT signaling pathway LY294002 reversed the corresponding phenomenon, but no synergistic pharmacological properties of AR-C118925XX and LY294002 have been found. In vivo experiments showed that ATP induced tumor growth, while AR-C118925XX inhibited ATP-induced tumor growth. Our conclusion is that P2RY2 activated the AKT/GSK-3beta/VEGF signal to promote the proliferation and migration of GC, suggesting that P2RY2 may be a new potential target for the treatment of GC.

Keywords: proliferation; p2ry2; 3beta vegf; gsk 3beta; akt gsk; activation

Journal Title: Carcinogenesis
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.