LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model

Photo from wikipedia

Aberrant sphingolipid metabolism has been reported to promote breast cancer progression. Sphingosine kinase 1 (SphK1) is a key metabolic enzyme for the formation of pro-survival S1P from pro-apoptotic ceramide. The… Click to show full abstract

Aberrant sphingolipid metabolism has been reported to promote breast cancer progression. Sphingosine kinase 1 (SphK1) is a key metabolic enzyme for the formation of pro-survival S1P from pro-apoptotic ceramide. The role of SphK1 in breast cancer has been well studied in estrogen receptor (ER)-positive breast cancer; however, its role in human epidermal growth factor 2 (HER2)-positive breast cancer remains unclear. Here, we show that genetic deletion of SphK1 significantly reduced mammary tumor development with reduced tumor incidence and multiplicity in the MMTV-neu transgenic mouse model. Gene expression analysis revealed significant reduction of claudin-2 (CLDN2) expression in tumors from SphK1 deficient mice, suggesting that CLDN2 may mediate SphK1's function. It is remarkable that SphK1 deficiency in HER2-positive breast cancer model inhibited tumor formation by the different mechanism from ER-positive breast cancer. In vitro experiments demonstrated that overexpression of SphK1 in ER-/PR-/HER2+ human breast cancer cells enhanced cell proliferation, colony formation, migration and invasion. Furthermore, immunostaining of SphK1 and CLDN2 in HER2-positive human breast tumors revealed a correlation in high-grade disease. Taken together, these findings suggest that SphK1 may play a pivotal role in HER2-positive breast carcinogenesis. Targeting SphK1 may represent a novel approach for HER2-positive breast cancer chemoprevention and/or treatment.

Keywords: breast; sphk1; positive breast; breast cancer; her2

Journal Title: Carcinogenesis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.