LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Applied electric fields suppress osimertinib-induced cytotoxicity via inhibiting FOXO3a nuclear translocation through AKT activation.

Photo by kellysikkema from unsplash

Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not… Click to show full abstract

Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not fully understood. Endogenous electric fields (EFs), components of the tumor microenvironment, are associated with cancer cell migration and proliferation. However, the impact of EFs on drug efficiency has not been studied. In this study, we observed that EFs counteracted the effects of osimertinib. EFs of 100mV/mm suppressed osimertinib-induced cell death and promoted cell proliferation. Transcriptional analysis revealed that the expression pattern induced by osimertinib was altered by EFs stimulation. KEGG analysis showed that differential expression genes were mostly enriched in PI3K-AKT pathway. Then, we found that osimertinib inhibited AKT phosphorylation, while EFs stimulation resulted in significant activation of AKT, which could override the effects generated by osimertinib. Importantly, pharmacological inhibition of PI3K/AKT by LY294002 diminished EF-induced activation of AKT and restored the cytotoxicity of osimertinib suppressed by EFs, which proved that AKT activation was essential for EFs to attenuate the efficacy of osimertinib. Furthermore, activation of AKT by EFs led to phosphorylation of forkhead box O3a (FOXO3a), and reduction in nuclear translocation of FOXO3a induced by osimertinib, resulting in decreased expression of Bim and attenuated cytotoxicity of osimertinib. Taken together, we demonstrated that EFs suppressed the anti-tumor activity of osimertinib through AKT/FOXO3a/Bim pathway, and combination of PI3K/AKT inhibitor with osimertinib counteracted the effects of EFs. Our findings provided preliminary data for therapeutic strategies to enhance osimertinib efficacy in NSCLC patients.

Keywords: akt; electric fields; osimertinib induced; activation; cytotoxicity

Journal Title: Carcinogenesis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.