LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Metabolic Phenotype Associated with Mounting an Immune Response to a Systemic Infection of Listeria Monocytogenes (FS12-07-19).

Photo from wikipedia

Objectives Our goal in these studies was to quantitatively determine the metabolic phenotype of intracellular bacterial infection, immune response, and clearance. Mounting an immune response to a bacterial infection is… Click to show full abstract

Objectives Our goal in these studies was to quantitatively determine the metabolic phenotype of intracellular bacterial infection, immune response, and clearance. Mounting an immune response to a bacterial infection is metabolically taxing to the host. During infection, the host exhibits sickness syndrome characterized by fever, lethargy and anorexia. Cells of the immune system also shift cellular metabolic pathways, which alters the metabolic and nutritional needs of the host. Previous studies of the metabolic demands of sickness have used model antigens, mitogens or pattern associated molecular patterns, which do not represent the full spectrum of response to a live pathogen infection. Thus, our study is the first of its kind to assess the full spectrum of metabolic, nutritional, immunological, and behavioral demands of live pathogen infection. Methods Mice were administered either a mock intraperitoneal (ip) injection of PBS (Control) or ip dose of Listeria and individually housed over the course of 12 days in Promethion metabolic cages to monitor their metabolic phenotype. In a parallel study, groups of mice were equivalently treated, yet conventionally housed and sacrificed at 3, 5, 7 and 10 days over the course of infection to determine splenic bacterial burden, Listeria-specific T cell response, and cellular metabolic status. Results We observed that the period of the innate immune response (days 1-4) had the most metabolic demand, indicated by weight loss (P < 0.05), reduced activity (P < 0.05), increased sleep (P < 0.05), and decreased energy expenditure (P < 0.05). During the period of the adaptive immune response (days 5-10), there was little to no metabolic impact in the infected animals when compared to the uninfected control animals. We also observed increased GLUT1 expression (P < 0.05) on the membranes of myeloid cells during the period of highest metabolic demand, indicating shifts in cellular metabolism of innate immune cells during the early stages of infection. Conclusions The innate immune response is more metabolically taxing on the host compared to the adaptive immune response and places an increased metabolic demand on infected animals. Funding Sources Departmental startup funds to Elizabeth Hiltbold Schwartz.

Keywords: immune response; metabolic phenotype; response; infection

Journal Title: Current developments in nutrition
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.