Growing evidence indicates that amyloid-beta (Aβ) accumulation is one of the most common neurobiological biomarkers in Alzheimer's disease (AD). The primary aim of this study was to explore whether the… Click to show full abstract
Growing evidence indicates that amyloid-beta (Aβ) accumulation is one of the most common neurobiological biomarkers in Alzheimer's disease (AD). The primary aim of this study was to explore whether the radiomic features of Aβ positron emission tomography (PET) images are used as predictors and provide a neurobiological foundation for AD. The radiomics features of Aβ PET imaging of each brain region of the Brainnetome Atlas were computed for classification and prediction using a support vector machine model. The results showed that the area under the receiver operating characteristic curve (AUC) was 0.93 for distinguishing AD (N = 291) from normal control (NC; N = 334). Additionally, the AUC was 0.83 for the prediction of mild cognitive impairment (MCI) converting (N = 88) (vs. no conversion, N = 100) to AD. In the MCI and AD groups, the systemic analysis demonstrated that the classification outputs were significantly associated with clinical measures (apolipoprotein E genotype, polygenic risk scores, polygenic hazard scores, cerebrospinal fluid Aβ, and Tau, cognitive ability score, the conversion time for progressive MCI subjects and cognitive changes). These findings provide evidence that the radiomic features of Aβ PET images can serve as new biomarkers for clinical applications in AD/MCI, further providing evidence for predicting whether MCI subjects will convert to AD.
               
Click one of the above tabs to view related content.