LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disrupted Timing of MET Signaling Derails the Developmental Maturation of Cortical Circuits and Leads to Altered Behavior in Mice.

Photo by sxy_selia from unsplash

The molecular regulation of the temporal dynamics of circuit maturation is a key contributor to the emergence of normal structure-function relations. Developmental control of cortical MET receptor tyrosine kinase, expressed… Click to show full abstract

The molecular regulation of the temporal dynamics of circuit maturation is a key contributor to the emergence of normal structure-function relations. Developmental control of cortical MET receptor tyrosine kinase, expressed early postnatally in subpopulations of excitatory neurons, has a pronounced impact on the timing of glutamatergic synapse maturation and critical period plasticity. Here, we show that using a controllable overexpression (cto-Met) transgenic mouse, extending the duration of MET signaling after endogenous Met is switched off leads to altered molecular constitution of synaptic proteins, persistent activation of small GTPases Cdc42 and Rac1, and sustained inhibitory phosphorylation of cofilin. These molecular changes are accompanied by an increase in the density of immature dendritic spines, impaired cortical circuit maturation of prefrontal cortex layer 5 projection neurons, and altered laminar excitatory connectivity. Two photon in vivo imaging of dendritic spines reveals that cto-Met enhances de novo spine formation while inhibiting spine elimination. Extending MET signaling for two weeks in developing cortical circuits leads to pronounced repetitive activity and impaired social interactions in adult mice. Collectively, our data revealed that temporally controlled MET signaling as a critical mechanism for controlling cortical circuit development and emergence of normal behavior.

Keywords: cortical circuits; disrupted timing; leads altered; circuits leads; maturation; met signaling

Journal Title: Cerebral cortex
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.