LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The performance monitoring system is attuned to others' actions during dyadic motor interactions.

Photo by nci from unsplash

Interpersonal motor interactions require the simultaneous monitoring of one's own and one's partner's actions. To characterize how the action monitoring system tracks self and other behavior during synchronous interactions, we… Click to show full abstract

Interpersonal motor interactions require the simultaneous monitoring of one's own and one's partner's actions. To characterize how the action monitoring system tracks self and other behavior during synchronous interactions, we combined electroencephalography recordings and immersive virtual reality in two tasks where participants were asked to synchronize their actions with those of a virtual partner (VP). The two tasks differed in the features to be monitored: the Goal task required participants to predict and monitor the VP's reaching goal; the Spatial task required participants to predict and monitor the VP's reaching trajectory. In both tasks, the VP performed unexpected movement changes to which the participant needed to adapt. By extracting the neural activity locked to the detection of unexpected changes in the VP's action (other-monitoring) or to the participants' action-replanning (self-monitoring), we show that the monitoring system is more attuned to others' than to one's own actions. Additionally, distinctive neural responses to VP's unexpected goals and trajectory corrections were found: goal changes were reflected both in early fronto-central and later posterior neural responses while trajectory deviations were reflected only in later posterior responses. Altogether, our results indicate that the monitoring system adopts an inherent social mode to handle interpersonal motor interactions.

Keywords: system attuned; monitoring system; monitoring; motor interactions

Journal Title: Cerebral cortex
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.