LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetization transfer ratio for assessing remyelination after transcranial ultrasound stimulation in the lysolecithin rat model of multiple sclerosis.

Photo by kellysikkema from unsplash

It has been shown that transcranial ultrasound stimulation (TUS) is capable of attenuating myelin loss and providing neuroprotection in animal models of brain disorders. In this study, we investigated the… Click to show full abstract

It has been shown that transcranial ultrasound stimulation (TUS) is capable of attenuating myelin loss and providing neuroprotection in animal models of brain disorders. In this study, we investigated the ability of TUS to promote remyelination in the lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 μL LPC (1%) into the rat hippocampus and the treated group received daily TUS for 5 or 12 days. Magnetic resonance imaging techniques, including magnetization transfer ratio (MTR) and T2-weighted imaging, were used to longitudinally characterize the demyelination model. Furthermore, the therapeutic effects of TUS on LPC-induced demyelination were assessed by Luxol fast blue (LFB) staining. Our data revealed that reductions in MTR values observed during demyelination recover almost completely upon remyelination. The MTR values in demyelinated lesions were significantly higher in TUS-treated rats than in the LPC-only group after undergoing TUS. Form histological observation, TUS significantly reduced the size of demyelinated lesion 7 days after LPC administration. This study demonstrated that MTR was a sensitive and reproducible quantitative marker to assess remyelination process in vivo during TUS treatment. These findings might open new promising treatment strategies for demyelinating diseases such as multiple sclerosis.

Keywords: ultrasound stimulation; remyelination; magnetization transfer; transcranial ultrasound; tus; demyelination

Journal Title: Cerebral cortex
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.