LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Connectome-based predictive modeling of compulsion in obsessive-compulsive disorder.

Photo from wikipedia

Compulsion is one of core symptoms of obsessive-compulsive disorder (OCD). Although many studies have investigated the neural mechanism of compulsion, no study has used brain-based measures to predict compulsion. Here,… Click to show full abstract

Compulsion is one of core symptoms of obsessive-compulsive disorder (OCD). Although many studies have investigated the neural mechanism of compulsion, no study has used brain-based measures to predict compulsion. Here, we used connectome-based predictive modeling (CPM) to identify networks that could predict the levels of compulsion based on whole-brain functional connectivity in 57 OCD patients. We then applied a computational lesion version of CPM to examine the importance of specific brain areas. We also compared the predictive network strength in OCD with unaffected first-degree relatives (UFDR) of patients and healthy controls. CPM successfully predicted individual level of compulsion and identified networks positively (primarily subcortical areas of the striatum and limbic regions of the hippocampus) and negatively (primarily frontoparietal regions) correlated with compulsion. The prediction power of the negative model significantly decreased when simulating lesions to the prefrontal cortex and cerebellum, supporting the importance of these regions for compulsion prediction. We found a similar pattern of network strength in the negative predictive network for OCD patients and their UFDR, demonstrating the potential of CPM to identify vulnerability markers for psychopathology.

Keywords: compulsion; connectome based; based predictive; compulsive disorder; predictive modeling; obsessive compulsive

Journal Title: Cerebral cortex
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.