LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transient disruption of functional connectivity and depression of neural fluctuations in a mouse model of acute septic encephalopathy.

Photo by thinkmagically from unsplash

Septic encephalopathy leads to major and costly burdens for a large percentage of admitted hospital patients. Elderly patients are at an increased risk, especially those with dementia. Current treatments are… Click to show full abstract

Septic encephalopathy leads to major and costly burdens for a large percentage of admitted hospital patients. Elderly patients are at an increased risk, especially those with dementia. Current treatments are aimed at sedation to combat mental status changes and are not aimed at the underlying cause of encephalopathy. Indeed, the underlying pathology linking together peripheral infection and altered neural function has not been established, largely because good, acutely accessible readouts of encephalopathy in animal models do not exist. Behavioral testing in animals lasts multiple days, outlasting the time frame of acute encephalopathy. Here, we propose optical fluorescent imaging of neural functional connectivity (FC) as a readout of encephalopathy in a mouse model of acute sepsis. Imaging and basic behavioral assessment were performed at baseline, Hr8, Hr24, and Hr72 following injection of either lipopolysaccharide or phosphate buffered saline. Neural FC strength decreased at Hr8 and returned to baseline by Hr72 in motor, somatosensory, parietal, and visual cortical regions. Additionally, neural fluctuations transiently declined at Hr8 and returned to baseline by Hr72. Both FC strength and fluctuation tone correlated with neuroscore indicating this imaging methodology is a sensitive and acute readout of encephalopathy.

Keywords: septic encephalopathy; model acute; neural fluctuations; functional connectivity; mouse model

Journal Title: Cerebral cortex
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.