LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aperiodic neural activity reflects metacontrol.

Photo by robbie36 from unsplash

Higher-level cognitive functions are mediated via complex oscillatory activity patterns and its analysis is dominating cognitive neuroscience research. However, besides oscillatory (period) activity, also aperiodic activity constitutes neural dynamics, but… Click to show full abstract

Higher-level cognitive functions are mediated via complex oscillatory activity patterns and its analysis is dominating cognitive neuroscience research. However, besides oscillatory (period) activity, also aperiodic activity constitutes neural dynamics, but its relevance for higher-level cognitive functions is only beginning to be understood. The present study examined whether the broadband EEG aperiodic activity reflects principles of metacontrol. Metacontrol conceptualizes whether it is more useful to engage in more flexible processing of incoming information or to shield cognitive processes from incoming information (persistence-heavy processing). We examined EEG and behavioral data from a sample of nā€‰=ā€‰191 healthy participants performing a Simon Go/NoGo task that can be assumed to induce different metacontrol states (persistence-biased vs. flexibility-biased). Aperiodic activity was estimated using the FOOOF toolbox in the EEG power spectrum. There was a higher aperiodic exponent and offset in NoGo trials compared with Go trials, in incongruent (Go) trials compared with congruent (Go) trials. Thus, aperiodic activity increases during persistence-heavy processing, but decreases during flexibility-heavy processing. These findings link aperiodic features of the EEG signal and concepts describing the dynamics of how cognitive control modes are applied. Therefore, the study substantially extends the importance of aperiodic activity in understanding cognitive functions.

Keywords: activity reflects; processing; metacontrol; aperiodic activity; activity; cognitive functions

Journal Title: Cerebral cortex
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.