LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spikiness and animacy as potential organizing principles of human ventral visual cortex.

Photo from wikipedia

Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3-4 topographical maps arranged along the macaque… Click to show full abstract

Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3-4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with "inanimate-spiky" and "inanimate-stubby" regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from "classic" object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.

Keywords: ventral visual; organizing principles; cortex; spikiness animacy

Journal Title: Cerebral cortex
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.