LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Tones Masked by Fluctuating Noise in Rat Auditory Cortex

Photo from wikipedia

Abstract Sounds in natural settings always appear over a noisy background. The masked threshold of a pure tone in white noise (the lowest sound level at which the tone can… Click to show full abstract

Abstract Sounds in natural settings always appear over a noisy background. The masked threshold of a pure tone in white noise (the lowest sound level at which the tone can be detected in the presence of masking noise) is largely determined by energy masking in the peripheral auditory system: when the signal‐to‐noise ratio within a frequency band centered at the target tone frequency is large enough, the tone can be detected. However, when additional information is supplied to the auditory system, for example in the presence of slow and coherent modulations of a broadband masker (often found in natural sounds), masked thresholds can be reduced substantially below the values expected from pure energy masking. Here, we used intracellular recordings in vivo in rat auditory cortex in order to study neuronal responses to pure tones masked by broadband maskers and amplitude‐modulated broadband maskers. When tones were embedded in amplitude‐modulated noise, detection thresholds were substantially lower than when embedded in unmodulated noise. The main cue for tone detection in modulated noise consisted of the suppression of the locking of the neuronal responses to the amplitude modulation of the noise by low‐level tones.

Keywords: detection; auditory; rat auditory; tone; noise; auditory cortex

Journal Title: Cerebral Cortex
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.