LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-Term Exposure to a Calorically Dense Diet Alters Taste-Evoked Responses in the Chorda Tympani Nerve, But Not Unconditioned Lick Responses to Sucrose

Photo by mbrunacr from unsplash

Upon presentation of a calorically dense diet, rats display hyperphagia driven by increased meal size. The increased meal size and hyperphagia are most robust across the first several days of… Click to show full abstract

Upon presentation of a calorically dense diet, rats display hyperphagia driven by increased meal size. The increased meal size and hyperphagia are most robust across the first several days of diet exposure before changes in body weight are evident, thus it is plausible that one of the factors that drives the hyperphagia may be enhanced orosensory responsivity. Here, electrophysiological responses to an array of taste stimuli were recorded from the chorda tympani nerve, a branch of the facial nerve that innervates taste receptors in the anterior tongue, of rats presented a high-energy (45% fat and 17% sucrose) diet for 3 days. Responses in the high-energy diet group were significantly higher for 0.01, 0.03, 0.06 and 0.3 M sucrose; 0.05 M Na-saccharin; and 0.01 M quinine compared with those of chow-fed controls. Another cohort of animals was tested in 30-min brief-access taste sessions (10-s trials) to a sucrose concentration series across the first 6 days of high-energy diet presentation. Both groups responded in a concentration-dependent manner. No significant group differences in unconditioned licking or trials initiated were revealed. Results from a third cohort of rats showed that responses to sucrose in a brief-access taste test also remained largely unchanged as a function of 3-day access to a sucrose solution. Taken together, these findings suggest that 3 days of high-energy diet exposure results in alterations to peripheral gustatory signaling yet these changes do not necessarily generalize to changes in responsiveness to sucrose, as least as measured in this procedure.

Keywords: high energy; tympani nerve; calorically dense; nerve; chorda tympani; dense diet

Journal Title: Chemical Senses
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.