LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and Evaluation of an Azobenzenediamide Bridged bis(β-Cyclodextrin)-Bonded Chiral Stationary Phase for HPLC.

Photo by krsp from unsplash

An azobenzenediamide bridged bis(β-cyclodextrin) chiral stationary phase (AZCDP) was prepared, and its high-performance liquid chromatography performance in reversed-phase and polar organic modes was evaluated by chiral probes, including triazoles, flavanones,… Click to show full abstract

An azobenzenediamide bridged bis(β-cyclodextrin) chiral stationary phase (AZCDP) was prepared, and its high-performance liquid chromatography performance in reversed-phase and polar organic modes was evaluated by chiral probes, including triazoles, flavanones, amino acids and β-blockers. The results showed that AZCDP had strong chiral separation ability and the 40 chiral compounds were successfully resolved, of which 32 were completely separated (Rs ≥ 1.5) and the best enantioresolution was up to 3.93 within 20 min under a wide range of pH value and temperature. The separation ability of AZCDP with double cavities was significantly better than common CD-CSPs with single cavity, which was related to the synergistic inclusion effect. Compared with the previously reported stilbene (C=C)-bridged CSP, AZCDP with azobenzene (N=N)-bridged had a wider resolution range. For example, it could resolve myclobutanil, pindolol, carteolol, betaxolol, bevanolol and bitertanol, which could not be resolved before, and should be related to the fact that the flexible N=N was more compatible with the synergistic inclusion between cavities than the rigid C=C bridge group. The azobenzenediamide bridging group could also provide hydrogen bond, π-π and other sites, which was conducive to chiral separations.

Keywords: azobenzenediamide bridged; stationary phase; bis cyclodextrin; phase; bridged bis; chiral stationary

Journal Title: Journal of chromatographic science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.