LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential regulation of sodium channels as a novel proarrhythmic mechanism in the human failing heart

Photo by freestocks from unsplash

Aims In heart failure (HF), enhanced persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. However, the underlying regulatory mechanisms remain unclear. Our aim was… Click to show full abstract

Aims In heart failure (HF), enhanced persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. However, the underlying regulatory mechanisms remain unclear. Our aim was to potentially investigate the regulation and electrophysiological contribution of neuronal sodium channel NaV1.8 in failing human heart and eventually to reveal a novel anti-arrhythmic therapy. Methods and results By western blot, we found that NaV1.8 protein expression is significantly up-regulated, while of the predominant cardiac isoform NaV1.5 is inversely reduced in human HF. Furthermore, to investigate the relation of NaV1.8 regulation with the cellular proarrhythmic events, we performed comprehensive electrophysiology recordings and explore the effect of NaV1.8 on INaL, action potential duration (APD), Ca2+ spark frequency, and arrhythmia induction in human failing cardiomyocytes. NaV1.8 inhibition with the specific blockers A-803467 and PF-01247324 decreased INaL, abbreviated APD and reduced cellular-spontaneous Ca2+-release and proarrhythmic events in human failing cardiomyocytes. Consistently, in mouse cardiomyocytes stressed with isoproterenol, pharmacologic inhibition and genetically knockout of NaV1.8 (SCN10A-/-), were associated with reduced INaL and abbreviated APD. Conclusion We provide first evidence of differential regulation of NaV1.8 and NaV1.5 in the failing human myocardium and their contribution to arrhythmogenesis due to generation of INaL. We propose inhibition of NaV1.8 thus constitutes a promising novel approach for selective anti-arrhythmic therapy in HF.

Keywords: regulation sodium; heart; differential regulation; human failing; regulation

Journal Title: Cardiovascular Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.