LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Soil Fauna on Cellulose and Lignin Decomposition of Plant Litter in the Changbai Mountain, China

Photo from wikipedia

Abstract Cellulose and lignin decomposition is crucial for efficient nutrient cycling, yet few studies have been performed regarding the effects of soil fauna on cellulose and lignin decomposition. This study… Click to show full abstract

Abstract Cellulose and lignin decomposition is crucial for efficient nutrient cycling, yet few studies have been performed regarding the effects of soil fauna on cellulose and lignin decomposition. This study was conducted to better understand the effects of soil fauna on lignin and cellulose decomposition in the Changbai Mountain. Litterbags of two different mesh sizes were used to examine cellulose and lignin decomposition of 11 species of plant litter in the four vegetation zones of the Changbai Mountain North Slope over a 24-mo period. Cellulose and lignin clearly declined over time for all 11 species of plant litter. Cellulose decomposition rate faster than the rate of lignin decomposition in the majority of plant species. Soil fauna could promote the decomposition of cellulose and lignin. The abundance and richness of soil fauna in coniferous broad-leaved mixed forests were greater than in coniferous forest, Betula ermanii Cham. (Fagales: Betulaceae) forest, and alpine tundra. Soil fauna had a greater effect on Abies nephrolepis Maxim. (Pinales: Pinaceae) cellulose and lignin, whereas contribution rates were relatively lower in the Fraxinus mandshurica Rupr. (Contortae: Oleaceae) and Acer mono Maxim. (Sapindales: Aceraceae) litterbags at the end of the experiment. Litter quality was negatively correlated with the soil faunal contribution to litter decomposition directly. Overall, the findings of this study have implications for the effects of soil fauna on cellulose and lignin decomposition in the alpine ecosystem, and also can provide experimental evidence that soil faunal contribution is affected by soil faunal communities and litter quality.

Keywords: effects soil; plant; cellulose lignin; soil fauna; lignin decomposition; decomposition

Journal Title: Environmental Entomology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.