LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

P3509Leukocyte derived tumour necrosis factor modulates cardiac function in health and disease

Photo by averey from unsplash

Tumour necrosis factor alpha (TNFα) regulates both normal and pathophysiological cardiac function. The regulatory role of TNFα derived from different sources (leukocyte versus cardiac cells) in cardiac physiology is unclear.… Click to show full abstract

Tumour necrosis factor alpha (TNFα) regulates both normal and pathophysiological cardiac function. The regulatory role of TNFα derived from different sources (leukocyte versus cardiac cells) in cardiac physiology is unclear. Deficiency of iRhom2 protein prevents circulating immune cells from shedding TNFα (and CD62L, an adhesion molecule essential for effective immune function). Here we investigated the role of leukocyte derived TNFα in constitutive cardiac function and after cardiac injury. Adult iRhom2-deficient mice (KO) and wildtype (Wt) littermates, of both genders, underwent echocardiography to assess cardiac physiologic function at least 1 week before receiving a single dose of isoproterenol (300mg/kg IP) to induce cellular death in 10% of the cardiomyoctes [1]. Cardiac echocardiography was repeated 36 hours after isoproterenol. Peripheral and cardiac-resident leukocytes were phenotyped by flow cytometry and molecular markers of cardiac stress (atrial and brain natriuretic protein, ANP, BNP) and inflammation (NFkB) were quantified using RT-PCR. Peripheral leukocytes from iRhom2 KO mice failed to shed CD62L in response to isoproterenol induced cardiac injury (e.g. neutrophils CD62L Mean Fluorescence Intensity KO: 9149±4616, Wt: 972±558, p<0.0001, n=9). iRhom2-deficient mice had higher cardiac output at baseline (KO 23±2 mL/min, n=11) compared to their wildtype littermates (Wt 18±3 mL/min, n=9). Wild type mice increased contractility after isoproterenol (Wt ejection fraction: baseline 60±6%, isoproterenol 68±6%, n=8) whilst iRhom2-deficient mice were unable to (KO ejection fraction: baseline 66±9%, isoproterenol 61±5%, n=8). ANP and BNP mRNA were elevated in ventricular tissue of iRhom2-knockout mice after isoproterenol, when compared to naïve tissue (ANP 2ΔCT: 3x increase, BNP 2ΔCT: 1.6x increase) whereas only ANP was elevated in wildtypes (ANP 2ΔCT: 2.7x increase, BNP 2ΔCT: 0.9x increase). No difference in immune cell infiltration of ventricular cardiac tissue was observed (number of CD45+ cells KO: 3014±3482, Wt: 2555±1411, p=0.7, n=9) NFkB mRNA was upregulated at baseline (2ΔCT KO: 0.2±0.08, Wt: 0.1±0.09) suggesting constitutive cardiac inflammation in iRhom2-deficient mice. Inability to shed CD62L and TNFα is associated with constitutive and acquired cardiac dysfunction in iRhom2-deficient mice. These data support the hypothesis that leukocyte-derived TNFα is required for maintaining cardiac function in health and disease. National Institute of Academic Anaesthesia/Royal College of Anaesthetists/British Journal of Anaesthesia; National Institute for Health Research

Keywords: isoproterenol; cardiac function; irhom2 deficient; mice; function; deficient mice

Journal Title: European Heart Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.