LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wavefront directionality and decremental stimuli synergistically improve identification of ventricular tachycardia substrate: insights from personalized computational heart models

Photo from wikipedia

Abstract Aims Multiple wavefront pacing (MWP) and decremental pacing (DP) are two electroanatomic mapping (EAM) strategies that have emerged to better characterize the ventricular tachycardia (VT) substrate. The aim of… Click to show full abstract

Abstract Aims Multiple wavefront pacing (MWP) and decremental pacing (DP) are two electroanatomic mapping (EAM) strategies that have emerged to better characterize the ventricular tachycardia (VT) substrate. The aim of this study was to assess how well MWP, DP, and their combination improve identification of electrophysiological abnormalities on EAM that reflect infarct remodelling and critical VT sites. Methods and results Forty-eight personalized computational heart models were reconstructed using images from post-infarct patients undergoing VT ablation. Paced rhythms were simulated by delivering an initial (S1) and an extra-stimulus (S2) from one of 100 locations throughout each heart model. For each pacing, unipolar signals were computed along the myocardial surface to simulate substrate EAM. Six EAM features were extracted and compared with the infarct remodelling and critical VT sites. Concordance of S1 EAM features between different maps was lower in hearts with smaller amounts of remodelling. Incorporating S1 EAM features from multiple maps greatly improved the detection of remodelling, especially in hearts with less remodelling. Adding S2 EAM features from multiple maps decreased the number of maps required to achieve the same detection accuracy. S1 EAM features from multiple maps poorly identified critical VT sites. However, combining S1 and S2 EAM features from multiple maps paced near VT circuits greatly improved identification of critical VT sites. Conclusion Electroanatomic mapping with MWP is more advantageous for characterization of substrate in hearts with less remodelling. During substrate EAM, MWP and DP should be combined and delivered from locations proximal to a suspected VT circuit to optimize identification of the critical VT site.

Keywords: eam features; eam; identification; ventricular tachycardia; heart; substrate

Journal Title: Europace
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.