LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of electrical dyssynchrony in cardiac resynchronization therapy: 12-lead electrocardiogram vs. 96-lead body surface map

Photo from wikipedia

Abstract Aims The standard deviation of activation time (SDAT) derived from body surface maps (BSMs) has been proposed as an optimal measure of electrical dyssynchrony in patients with cardiac resynchronization… Click to show full abstract

Abstract Aims The standard deviation of activation time (SDAT) derived from body surface maps (BSMs) has been proposed as an optimal measure of electrical dyssynchrony in patients with cardiac resynchronization therapy (CRT). The goal of this study was two-fold: (i) to compare the values of SDAT in individual CRT patients with reconstructed myocardial metrics of depolarization heterogeneity using an inverse solution algorithm and (ii) to compare SDAT calculated from 96-lead BSM with a clinically easily applicable 12-lead electrocardiogram (ECG). Methods and results Cardiac resynchronization therapy patients with sinus rhythm and left bundle branch block at baseline (n = 19, 58% males, age 60 ± 11 years, New York Heart Association Classes II and III, QRS 167 ± 16) were studied using a 96-lead BSM. The activation time (AT) was automatically detected for each ECG lead, and SDAT was calculated using either 96 leads or standard 12 leads. Standard deviation of activation time was assessed in sinus rhythm and during six different pacing modes, including atrial pacing, sequential left or right ventricular, and biventricular pacing. Changes in SDAT calculated both from BSM and from 12-lead ECG corresponded to changes in reconstructed myocardial ATs. A high degree of reliability was found between SDAT values obtained from 12-lead ECG and BSM for different pacing modes, and the intraclass correlation coefficient varied between 0.78 and 0.96 (P < 0.001). Conclusion Standard deviation of activation time measurement from BSM correlated with reconstructed myocardial ATs, supporting its utility in the assessment of electrical dyssynchrony in CRT. Importantly, 12-lead ECG provided similar information as BSM. Further prospective studies are necessary to verify the clinical utility of SDAT from 12-lead ECG in larger patient cohorts, including those with ischaemic cardiomyopathy.

Keywords: electrical dyssynchrony; cardiac resynchronization; resynchronization therapy; lead

Journal Title: Europace
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.