LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes in rhizospheric microbiome structure and soil metabolic function in response to continuous cucumber cultivation.

Photo from wikipedia

With the increasing reliance on intensive arable agriculture, analysis of the problems associated with continuous cropping has become a global research focus. Here, high-throughput sequencing and non-targeted metabolomics were used… Click to show full abstract

With the increasing reliance on intensive arable agriculture, analysis of the problems associated with continuous cropping has become a global research focus. Here, high-throughput sequencing and non-targeted metabolomics were used to evaluate the responses of soil microbial community structure and soil metabolic function to continuous cucumber cultivation (from one to 18 years of continuous cultivation) in greenhouses. Continuous cucumber cropping resulted in increased soil nutrient concentrations but decreased concentrations of available nutrients. The abundance of several bacterial genera associated with nutrient cycling, such as Bacillus and Sphingomonas, was reduced by continuous cucumber cultivation. The abundance of several beneficial fungal genera, including pathogen antagonists (e.g. Chaetomium, Mortierella, Aspergillus, and Penicillium), were found to gradually decrease in response to the increased duration of continuous cropping. 3-amino-2-naphthoic acid and L-valine increased initially and then decreased as the cropping continued, which were related to fatty acid metabolism and amino acid biosynthesis. We also confirmed a close association between microbial community structure and soil metabolites. This study linked the changes in microbial community structure and metabolites in the rhizosphere soil and provided new insights into soil-microbial interactions in continuous cucumber culture systems.

Keywords: continuous cucumber; structure soil; cucumber cultivation; soil

Journal Title: FEMS microbiology ecology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.