LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The hydrogen threshold of obligately methyl-reducing methanogens

Photo by trude_jonsson_stangel from unsplash

ABSTRACT Methanogenesis is the final step in the anaerobic degradation of organic matter. The most important substrates of methanogens are hydrogen plus carbon dioxide and acetate, but also the use… Click to show full abstract

ABSTRACT Methanogenesis is the final step in the anaerobic degradation of organic matter. The most important substrates of methanogens are hydrogen plus carbon dioxide and acetate, but also the use of methanol, methylated amines, and aromatic methoxy groups appears to be more widespread than originally thought. Except for most members of the family Methanosarcinaceae, all methylotrophic methanogens require external hydrogen as reductant and therefore compete with hydrogenotrophic methanogens for this common substrate. Since methanogenesis from carbon dioxide consumes four molecules of hydrogen per molecule of methane, whereas methanogenesis from methanol requires only one, methyl-reducing methanogens should have an energetic advantage over hydrogenotrophic methanogens at low hydrogen partial pressures. However, experimental data on their hydrogen threshold is scarce and suffers from relatively high detection limits. Here, we show that the methyl-reducing methanogens Methanosphaera stadtmanae (Methanobacteriales), Methanimicrococcus blatticola (Methanosarcinales), and Methanomassiliicoccus luminyensis (Methanomassiliicoccales) consume hydrogen to partial pressures < 0.1 Pa, which is almost one order of magnitude lower than the thresholds for M. stadtmanae and M. blatticola reported in the only previous study on this topic. We conclude that methylotrophic methanogens should outcompete hydrogenotrophic methanogens for hydrogen and that their activity is limited by the availability of methyl groups.

Keywords: hydrogen threshold; hydrogenotrophic methanogens; reducing methanogens; methyl reducing; methanogens hydrogen

Journal Title: FEMS Microbiology Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.