Worldwide, Aeromonas salmonicida is a major bacterial pathogen of fish in both marine and freshwater environments. Despite psychrophilic growth being common for this species, the number of characterized mesophilic strains… Click to show full abstract
Worldwide, Aeromonas salmonicida is a major bacterial pathogen of fish in both marine and freshwater environments. Despite psychrophilic growth being common for this species, the number of characterized mesophilic strains is increasing. Thus, this species may serve as a model for the study of intraspecies lifestyle diversity. Although bacteria are preyed upon by protozoan predators, their interaction inside or outside the phagocytic pathway of the predator can provide several advantages to the bacteria. To correlate intraspecies diversity with predation outcome, we studied the fate of psychrophilic and mesophilic strains of A. salmonicida co-cultured with the ciliate Tetrahymena pyriformis. Three types of outcome were observed: digestion, resistance to phagocytosis and pathogenicity. The psychrophilic strains are fully digested by the ciliate. In contrast, the mesophilic A. salmonicida subsp. pectinolytica strain is pathogenic to the ciliate. All the other mesophilic strains display mechanisms to resist phagocytosis and/or digestion, which allow them to survive ciliate predation. In some cases, passage through the phagocytic pathway resulted in a few mesophilic A. salmonicida being packaged inside fecal pellets. This study sheds light on the great phenotypic diversity observed in the complex range of mechanisms used by A. salmonicida to confront a predator.
               
Click one of the above tabs to view related content.