LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets.

Photo from wikipedia

There is no effective vaccine against malaria; therefore, chemotherapy is to date the only choice to fight against this infectious disease. However, there is growing evidences of drug-resistance mechanisms in… Click to show full abstract

There is no effective vaccine against malaria; therefore, chemotherapy is to date the only choice to fight against this infectious disease. However, there is growing evidences of drug-resistance mechanisms in malaria treatments. Therefore, the identification of new drug targets is an urgent need for the clinical management of the disease. Proteomic approaches offer the chance of determining the effects of antimalarial drugs on the proteome of Plasmodium parasites. Accordingly, we reviewed the effects of antimalarial drugs on the Plasmodium falciparum proteome pointing out the relevance of several proteins as possible drug targets in malaria treatment. In addition, some of the P. falciparum stage-specific altered proteins and parasite-host interactions might play important roles in pathogenicity, survival, invasion and metabolic pathways and thus serve as potential sources of drug targets. In this review, we have identified several proteins, including thioredoxin reductase, helicases, peptidyl-prolyl cis-trans isomerase, endoplasmic reticulum-resident calcium-binding protein, choline/ethanolamine phosphotransferase, purine nucleoside phosphorylase, apical membrane antigen 1, glutamate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase, heat shock protein 70x, knob-associated histidine-rich protein and erythrocyte membrane protein 1, as promising antimalarial drugs targets. Overall, proteomic approaches are able to partially facilitate finding possible drug targets. However, the integration of other 'omics' and specific pharmaceutical techniques with proteomics may increase the therapeutic properties of the critical proteins identified in the P. falciparum proteome.

Keywords: drug targets; falciparum proteome; antimalarial drugs; drugs plasmodium

Journal Title: Pathogens and disease
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.