LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens

Photo from wikipedia

Abstract DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such… Click to show full abstract

Abstract DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.

Keywords: dna repair; filamentous pathogens; repair; repair pathways; evolution

Journal Title: FEMS Microbiology Reviews
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.