LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution.

Photo from wikipedia

Genomic structural variations (SVs) promote the evolution of Saccharomyces cerevisiae, and play an important role in phenotypic diversities. Yeast genomic structures can be remodeled by design and bottom-up synthesis. The… Click to show full abstract

Genomic structural variations (SVs) promote the evolution of Saccharomyces cerevisiae, and play an important role in phenotypic diversities. Yeast genomic structures can be remodeled by design and bottom-up synthesis. The synthesis of yeast genome creates novel copy number variations (CNVs) and SVs and develops new strategies to discover gene functions. Further, an inducible evolution system SCRaMbLE, consisted of 3,932 loxPsym sites, was incorporated on synthetic yeast genome. SCRaMbLE enables genomic rearrangements at will and rapidly generates chromosomal number variations, and massive SVs under customized conditions. The impacts of genetic variations on phenotypes can be revealed by genome analysis and chromosome restructuring. Yeast genome synthesis and SCRaMbLE provide a new research paradigm to explore the genotypic mechanism of phenotype diversities, and can be used to improve biological traits and optimize industrial chassis.

Keywords: genomic structural; structural variations; yeast genome; inducible evolution; synthesis

Journal Title: FEMS yeast research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.