LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network.

Photo from wikipedia

Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s… Click to show full abstract

Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.

Keywords: aspects evolutionary; interactions structural; structural aspects; regulatory network; network; transcription

Journal Title: FEMS yeast research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.