LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes

Photo from wikipedia

Abstract Fishes have independently evolved electric organs (EOs) at least six times, and the electric fields are used for communication, defense, and predation. However, the genetic basis of convergent evolution… Click to show full abstract

Abstract Fishes have independently evolved electric organs (EOs) at least six times, and the electric fields are used for communication, defense, and predation. However, the genetic basis of convergent evolution of EOs remains unclear. In this study, we conducted comparative genomic analyses to detect genes showing signatures of positive selection and convergent substitutions in electric fishes from three independent lineages (Mormyroidea, Siluriformes, and Gymnotiformes). Analysis of 4,657 orthologs between electric fishes and their corresponding control groups identified consistent evidence for accelerated evolution in electric fish lineages. A total of 702 positively selected genes (PSGs) were identified in electric fishes, and many of these genes corresponded to cell membrane structure, ion channels, and transmembrane transporter activity. Comparative genomic analyses revealed that widespread convergent amino acid substitutions occurred along the electric fish lineages. The overlap of convergent genes and PSGs was identified as adaptive convergence, and a subset of genes was putatively associated with electrical and muscular activities, especially scn4aa (a voltage-gated sodium channel gene). Our results provide hints to the genetic basis for the independent evolution of EOs during millions of years of evolution.

Keywords: evolution; genomic evidence; convergent; electric fishes; evidence convergent

Journal Title: Genome Biology and Evolution
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.