LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selection of Genome-Wide SNPs for Pooled Allelotyping Assays Useful for Population Monitoring

Photo from wikipedia

Abstract Parasitic worms are serious pests of humans, livestock, and crops worldwide. Multiple management strategies are employed in order to reduce their impact, and some of these may affect their… Click to show full abstract

Abstract Parasitic worms are serious pests of humans, livestock, and crops worldwide. Multiple management strategies are employed in order to reduce their impact, and some of these may affect their genome and population allelic frequency distribution. The evolution of chemical resistance, ecological changes, and pest dispersal has allowed an increasing number of pests to become difficult to control with current management methods. Their lifestyle limits the use of ecological and individual-based management of populations. There is a need to develop rapid, affordable, and simple diagnostics to assess the efficacy of management strategies and delay the evolution of resistance to these strategies. This study presents a multilocus, equal-representation, whole-genome pooled single nucleotide polymorphisms (SNPs) selection approach as a monitoring tool for the ovine nematode parasite Haemonchus contortus. The SNP selection method used two reference genomes of different quality, then validated these SNPs against a high-quality recent genome assembly. From over 11 million high-quality SNPs identified, 334 SNPs were selected, of which 262 were species-specific, yielded similar allele frequencies when assessed as multiple individuals or as pools of individuals, and suitable to distinguish mixed nematode isolate pools from single isolate pools. As a proof-of-concept, 21 Australian H. contortus populations with various phenotypes and genotypes were screened. This analysis confirmed the overall low level of genetic differentiation between populations collected from the field, but clearly identifying highly inbred populations, and populations showing genetic signatures associated with chemical resistance. The analysis showed that 66% of the SNPs were necessary for stability in assessing population genetic patterns, and SNP pairs did not show linkage according to allelic frequencies across the 21 populations. This method demonstrates that ongoing monitoring of parasite allelic frequencies and genetic changes can be achieved as a management assessment tool to identify drug-treatment failure, population incursions, and inbreeding signatures due to selection. The SNP selection method could also be applied to other parasite species.

Keywords: selection genome; genome wide; snps; management; population; selection

Journal Title: Genome Biology and Evolution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.