LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Small Horizontally Transferred Gene Cluster Contributes to the Sporulation of Alternaria alternata

Photo by anniespratt from unsplash

Abstract Horizontal gene transfer (HGT) has been identified as an important source of genomic innovation in fungi. However, how HGT drove the evolution of Alternaria alternata, a necrotrophic fungus which… Click to show full abstract

Abstract Horizontal gene transfer (HGT) has been identified as an important source of genomic innovation in fungi. However, how HGT drove the evolution of Alternaria alternata, a necrotrophic fungus which can be ubiquitously isolated from soil and various plants and decaying plant materials is largely known. In this study, we identified 12 protein-encoding genes that are likely acquired from lineages outside Pezizomycotina. Phylogenetic trees and approximately unbiased comparative topology tests strongly supported the evolutionary origin of these genes. According to their predicted functions, these HGT candidates are involved in nitrogen and carbohydrate metabolism. Especially, five genes of them were likely transferred as a physically linked cluster from Tremellales (Basidiomycota). Functionally knocking out the five-gene cluster in an A. alternata isolate causing citrus brown spot resulted in an 80% decrease in asexual spore production in the deletion mutant. We further knocked out each of these five genes in this cluster and the resultant single-gene deletion mutants exhibited a various degree of reduction in spore production. Except for conidiation, functions of these genes associated with vegetative growth, stress tolerance, and virulence are very limited. Our results provide new evidence that HGT has played important roles over the course of the evolution of filamentous fungi.

Keywords: small horizontally; gene cluster; alternaria alternata; gene; cluster; horizontally transferred

Journal Title: Genome Biology and Evolution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.