LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CoVEffect: interactive system for mining the effects of SARS-CoV-2 mutations and variants based on deep learning

Photo by shubzweb3 from unsplash

Abstract Background Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles,… Click to show full abstract

Abstract Background Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts to extract—for each variant/mutation—its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with labeled higher/lower levels in relation to the nonmutated virus. Results The proposed framework comprises (i) the provisioning of abstracts from a COVID-19–related big data corpus (CORD-19) and (ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application (http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the predictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was trained through a carefully designed process, using a minimal and highly diversified pool of samples. Conclusions The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-structured text translation tasks, which are typical of biomedical domains.

Keywords: system mining; interactive system; coveffect interactive; sars cov; mutations variants

Journal Title: GigaScience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.