LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

Photo by nhoizey from unsplash

Abstract Background Gene homology type classification is required for many types of genome analyses, including comparative genomics, phylogenetics, and protein function annotation. Consequently, a large variety of tools have been… Click to show full abstract

Abstract Background Gene homology type classification is required for many types of genome analyses, including comparative genomics, phylogenetics, and protein function annotation. Consequently, a large variety of tools have been developed to perform homology classification across genomes of different species. However, when applied to large genomic data sets, these tools require high memory and CPU usage, typically available only in computational clusters. Findings Here we present a new graph-based orthology analysis tool, SwiftOrtho, which is optimized for speed and memory usage when applied to large-scale data. SwiftOrtho uses long k-mers to speed up homology search, while using a reduced amino acid alphabet and spaced seeds to compensate for the loss of sensitivity due to long k-mers. In addition, it uses an affinity propagation algorithm to reduce the memory usage when clustering large-scale orthology relationships into orthologous groups. In our tests, SwiftOrtho was the only tool that completed orthology analysis of proteins from 1,760 bacterial genomes on a computer with only 4 GB RAM. Using various standard orthology data sets, we also show that SwiftOrtho has a high accuracy. Conclusions SwiftOrtho enables the accurate comparative genomic analyses of thousands of genomes using low-memory computers. SwiftOrtho is available at https://github.com/Rinoahu/SwiftOrtho

Keywords: efficient multiple; swiftortho fast; fast memory; orthology; memory; memory efficient

Journal Title: GigaScience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.