LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pseudo-linear-array analysis of passive surface waves based on beamforming

Photo from wikipedia

Linear arrays are usually deployed for passive surface-wave investigations because of their high efficiency and convenience. In populated urban areas, it is almost impossible to set up a 2-D array… Click to show full abstract

Linear arrays are usually deployed for passive surface-wave investigations because of their high efficiency and convenience. In populated urban areas, it is almost impossible to set up a 2-D array in terms of the restriction from the existing infrastructures. The limited azimuthal coverage, however, lacks the ability to attenuate velocity overestimation caused by directional noise sources. We came up with a novel idea to compensate the azimuthal coverage by adding two more offline receivers to a conventional linear array, which is called pseudo-linear-array analysis of passive surface waves (PLAS). We used a beamforming algorithm to capture noise sources distribution and extract accurate dispersion curves. We used array response function to explain the superiority of the pseudo-linear array over the linear array and present the basic workflow of PLAS. Synthetic tests and field examples demonstrated the feasibility of PLAS to measure unbiased dispersion image. Comparison with mostly used passive surface wave methods (refraction microtremor, multichannel analysis of passive surface waves, spatial autocorrelation method, frequency–wavenumber analysis) suggested that PLAS can serve as an alternative passive surface wave method, especially in urban areas with restricted land accessibility and short-time acquisition demands.

Keywords: pseudo linear; analysis; surface; passive surface; linear array

Journal Title: Geophysical Journal International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.