The study of the discontinuity between crust and mantle beneath Iran is still an open issue in the geophysical community due to its various tectonic features created by the collision… Click to show full abstract
The study of the discontinuity between crust and mantle beneath Iran is still an open issue in the geophysical community due to its various tectonic features created by the collision between the Iranian and Arabian Plate. For instance in regions such as Zagros, Alborz or Makran, despite the number of studies performed, both by exploiting gravity or seismic data, the depth of the Moho and also interior structure is still highly uncertain. This is due to the complexity of the crust and to the presence of large short wavelength signals in the Moho depth. GOCE observations are capable and useful products to describe the Earth’s crust structure either at the regional or global scale. Furthermore, it is plausible to retrieve important information regarding the structure of the Earth’s crust by combining the GOCE observations with seismic data and considering additional information. In the current study, we used as observation a grid of second radial derivative of the anomalous gravitational potential computed at an altitude of 221 km by means of the space-wise approach, to study the depth of the Moho. The observations have been reduced for the gravitational effects of topography, bathymetry and sediments. The residual gravity has been inverted accordingly to a simple two-layer model. In particular, this guarantees the uniqueness of the solution of the inverse problem which has been regularized by means of a collocation approach in the frequency domain. Although results of this study show a general good agreement with seismically derived depths with a root mean square deviation of 6 km, there are some discrepancies under the Alborz zone and also Oman sea with a root mean square deviation up 10 km for the former and an average difference of 3 km for the latter. Further comparisons with the natural feature of the study area, for instance, active faults, show that the resulting Moho features can be directly associated with geophysical and tectonic blocks.
               
Click one of the above tabs to view related content.