LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Core–mantle topographic coupling: a parametric approach and implications for the formulation of a triaxial three-layered Earth rotation

Photo from wikipedia

We propose a parametric approach to the topographic (TOP) coupling between the mantle and outer core for refinement of the latest triaxial three-layered Earth rotation theory. Based on three models… Click to show full abstract

We propose a parametric approach to the topographic (TOP) coupling between the mantle and outer core for refinement of the latest triaxial three-layered Earth rotation theory. Based on three models of the core–mantle boundary (CMB) topography, we obtain the axial components of the TOP torque as −2.08 × 1019, −2.72 × 1018 and −1.97 × 1017 N m, respectively. Under the frame of the triaxial three-layered Earth rotation theory, we solve the corresponding periods of free core nutation as −(329.83 ± 28.12), −(457.54 ± ∼) and −(428.23 ± 1.09) mean solar days (d), respectively. The other three normal modes, namely, Chandler wobble, inner core wobble and free inner core nutation, are almost not affected by the TOP coupling of the CMB, their period values being 433.24, 2718.69 and 934.02 d, respectively. Calculations show that the TOP torque is highly sensitive to the adopted model of the topography, which is known to be robust. Taking into account the normal modes of the triaxial three-layered Earth rotation, the results of the CMB topography obtained by seismic tomography can be constrained in the future to a certain extent. In this study, considering the TOP coupling with the appropriate topography model, the estimates for the dynamic ellipticity ef of the fluid core lie between 0.0026340 and 0.0026430, values that are 3.56 % higher than the hydrostatic equilibrium value.

Keywords: three layered; topography; triaxial three; core; earth rotation; layered earth

Journal Title: Geophysical Journal International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.