LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conditions for turbulent Ekman layers in precessionally driven flow

Photo from wikipedia

Ekman layers develop at the boundaries of the Earth’s fluid core in response to precession. Instabilities in these layers lead to turbulence when a local Reynolds number, Re, based on… Click to show full abstract

Ekman layers develop at the boundaries of the Earth’s fluid core in response to precession. Instabilities in these layers lead to turbulence when a local Reynolds number, Re, based on the thickness of the Ekman layer, exceeds a critical value. The transition to turbulence is often assessed using experiments for steady Ekman layers, where the interior geostrophic flow is independent of time. Precessionally driven flow varies on diurnal timescales, so the transition to turbulence may occur at a different value of Re. We use 3-D numerical calculations in a local Cartesian geometry to assess the transition to turbulence in precessional flow. Calculations retain the horizontal component of the rotation vector and account for the influence of fluid stratification. The transition to turbulence in a neutrally stratified fluid occurs near Re = 500, which is higher than the value Re = 150 usually cited for steady Ekman layers. However, it is comparable to the nominal value for precessional flow in the Earth. Complications due to fluid stratification or a magnetic field can suppress the transition to turbulence, reducing the likelihood of turbulent Ekman layers in the Earth’s core.

Keywords: ekman layers; turbulence; transition turbulence; precessionally driven; driven flow

Journal Title: Geophysical Journal International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.