LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gradient-boosted equivalent sources

Photo from wikipedia

The equivalent source technique is a powerful and widely used method for processing gravity and magnetic data. Nevertheless, its major drawback is the large computational cost in terms of processing… Click to show full abstract

The equivalent source technique is a powerful and widely used method for processing gravity and magnetic data. Nevertheless, its major drawback is the large computational cost in terms of processing time and computer memory. We present two techniques for reducing the computational cost of equivalent source processing: block-averaging source locations and the gradient-boosted equivalent source algorithm. Through block-averaging, we reduce the number of source coefficients that must be estimated while retaining the minimum desired resolution in the final processed data. With the gradient-boosting method, we estimate the sources coefficients in small batches along overlapping windows, allowing us to reduce the computer memory requirements arbitrarily to conform to the constraints of the available hardware. We show that the combination of block-averaging and gradient-boosted equivalent sources is capable of producing accurate interpolations through tests against synthetic data. Moreover, we demonstrate the feasibility of our method by gridding a gravity data set covering Australia with over 1.7 million observations using a modest personal computer.

Keywords: boosted equivalent; equivalent source; gradient; equivalent sources; gradient boosted

Journal Title: Geophysical Journal International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.