LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biotechnological production of sialylated solid lipid microparticles as inhibitors of influenza A virus infection.

Photo from wikipedia

Influenza viruses bind to their target through a multivalent interaction of their hemagglutinins with sialosides at the host cell surface. To fight the virus, one therapeutic approach consists in developing… Click to show full abstract

Influenza viruses bind to their target through a multivalent interaction of their hemagglutinins with sialosides at the host cell surface. To fight the virus, one therapeutic approach consists in developing sialylated multivalent structures that can saturate the virus hemagglutinins and prevent the binding to host cells. We describe herein the biotechnological production of sialylated solid lipid microparticles (SSLMs) in three steps: (i) a microbiological step leading to the large-scale production of sialylated maltodextrins by metabolic engineering of an Escherichia coli strain, (ii) a new in vitro glycosylation process using the amylomaltase MalQ, based on the transglycosylation of the terminal sialoside ligand of the sialylated maltodextrin onto a long-chain alkyl glucoside, and (iii) the formulation of the final SSLMs presenting a multivalent sialic acid. We also describe the morphology and structure of the SSLMs and demonstrate their very promising properties as influenza virus inhibitors using hemagglutination inhibition and microneutralization assays on the human A/H1N1 pdm09 virus.

Keywords: biotechnological production; solid lipid; lipid microparticles; production; production sialylated; sialylated solid

Journal Title: Glycobiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.